Алексей К.
четверг, 19 декабря 2019 г.
понедельник, 16 декабря 2019 г.
понедельник, 2 декабря 2019 г.
Нанотехнологии 21 века. Лента времени
10 Октября 2019
Исследовательская лаборатория ВВС США объявила о разработке жидкого металла, который самостоятельно изменяет свою физическую структуру.
Исследовательская лаборатория ВВС США объявила о разработке жидкого металла, который самостоятельно изменяет свою физическую структуру.
16 Января 2019
Пластырь вместо уколов. Учёные разработали инновационную методику введения лекарств
2008 год
Objet Geometries Ltd создала 3d-принтер, который мог работать с различными материалами одновременно2012 год
Создание apple lighting
2016 год
За разработку отвечают специалисты из центра имени Гельмгольца Дрезден-Россендорф, а возглавляют ученых Безу Тешоме и Артур Эрбе. Под их руководством удалось создать способ нанесения золотого покрытия на нанопроводники, изготовленные из отрезков молекул ДНК. Такие детали можно собирать в целые схемы, что и может стать основой для создания «генетического компьютера». По заявлению Артура Эрбе,
понедельник, 25 ноября 2019 г.
Использование нанотехнологий в медицине
В настоящее время насчитывается более 800 групп промышленных товаров, представленных на рынке, которые содержат наноматериалы. В их число входят, например, отдельные образцы косметической продукции и сложные системы фильтрации воды. По данным Национального научного фонда США, в сфере производства наноматериалов к 2015 году будет занято более 2 млн. работников по всему миру.
Особенно впечатляют достижения наномедицины. Значение данной отрасли здравоохранения значительно выросло за последние несколько лет. Высокотехнологичные и дорогостоящие исследования позволяют активно пользоваться уникальными особенностями частиц нанометрового размера для проникновения внутрь клеточных мембран, локализывать применение в отдельных органах и системах человеческого организма рада наркотических и токсичных препаратов. Нанотехнологии открывают новые возможности при проведении диагностики, более эффективного и менее токсичного, щадящего медикаментозного лечения онкологических заболеваний, ВИЧ-инфекции и других болезней.
1. Дизайн генома
На данном этапе развития науки нельзя понять заранее, как будет выглядеть геном определенного человека: невозможно представить, в какие комбинации сложатся родительские гены и какие другие условия окажут влияние на формирование ДНК. Однако в теории это возможно. Например, ученые из международного проекта Synthetic Yeast 2.0 уже сделали первые шаги в этом направлении. Они моделируют результаты изменений в последовательностях в геноме. В этом им помогает машинное обучение, которое собирает огромное количество биологических данных, чтобы затем на основе них создать модель генома.
2. Синтез ДНК
Синтез ДНК, или по-другому репликация, — это образование новой молекулы на основании исходной. В ходе деления клеток каждая новая получает ДНК, которая полностью совпадает с ДНК материнской клетки. Синтез ДНК обеспечивает передачу наследственной информации.
Ученые уже несколько десятилетий синтезируют ДНК — но лишь короткий участок длиной всего несколько сотен пар оснований. Геном — это длинная последовательность нескольких тысяч пар оснований. Теоретически геном можно спроектировать с помощью сшивания множества маленьких участков ДНК. Однако этот процесс очень трудоемкий и долгий, из-за чего ученые могут совершить массу ошибок. Именно поэтому генетики сейчас разрабатывают новые ферменты, которые могут уменьшить количество ошибок и повысить качество получившихся последовательностей.
3. Редактирование генома
Ученые уже умеют редактировать геном, однако вносить в него серьезные изменения им пока не под силу. Если генетики научатся это делать, возможно, в будущем даже не потребуется разрабатывать технологию написания генома с нуля. Продвинутое редактирование будет возможно тогда, когда специалисты смогут предотвращать «соперничество» нескольких РНК, которые «сообщают», в какое место в геноме надо вносить изменения.
4. Искусственные хромосомы
ДНК упакована в хромосомы, число и форма которых варьируются в зависимости от вида. Сейчас ученые работают над созданием искусственных хромосом. В теории вместо 46 хромосом человек может иметь 47, и эта лишняя хромосома будет содержать в себе гены, введенные учеными. Это может быть абсолютно любой ген — например, защищающий от ВИЧ или другой серьезной болезни. Пока что генетики смогли создать искусственные дрожжевые и бактериальные хромосомы.
Особенно впечатляют достижения наномедицины. Значение данной отрасли здравоохранения значительно выросло за последние несколько лет. Высокотехнологичные и дорогостоящие исследования позволяют активно пользоваться уникальными особенностями частиц нанометрового размера для проникновения внутрь клеточных мембран, локализывать применение в отдельных органах и системах человеческого организма рада наркотических и токсичных препаратов. Нанотехнологии открывают новые возможности при проведении диагностики, более эффективного и менее токсичного, щадящего медикаментозного лечения онкологических заболеваний, ВИЧ-инфекции и других болезней.
1. Дизайн генома
На данном этапе развития науки нельзя понять заранее, как будет выглядеть геном определенного человека: невозможно представить, в какие комбинации сложатся родительские гены и какие другие условия окажут влияние на формирование ДНК. Однако в теории это возможно. Например, ученые из международного проекта Synthetic Yeast 2.0 уже сделали первые шаги в этом направлении. Они моделируют результаты изменений в последовательностях в геноме. В этом им помогает машинное обучение, которое собирает огромное количество биологических данных, чтобы затем на основе них создать модель генома.
2. Синтез ДНК
Синтез ДНК, или по-другому репликация, — это образование новой молекулы на основании исходной. В ходе деления клеток каждая новая получает ДНК, которая полностью совпадает с ДНК материнской клетки. Синтез ДНК обеспечивает передачу наследственной информации.
Ученые уже несколько десятилетий синтезируют ДНК — но лишь короткий участок длиной всего несколько сотен пар оснований. Геном — это длинная последовательность нескольких тысяч пар оснований. Теоретически геном можно спроектировать с помощью сшивания множества маленьких участков ДНК. Однако этот процесс очень трудоемкий и долгий, из-за чего ученые могут совершить массу ошибок. Именно поэтому генетики сейчас разрабатывают новые ферменты, которые могут уменьшить количество ошибок и повысить качество получившихся последовательностей.
3. Редактирование генома
Ученые уже умеют редактировать геном, однако вносить в него серьезные изменения им пока не под силу. Если генетики научатся это делать, возможно, в будущем даже не потребуется разрабатывать технологию написания генома с нуля. Продвинутое редактирование будет возможно тогда, когда специалисты смогут предотвращать «соперничество» нескольких РНК, которые «сообщают», в какое место в геноме надо вносить изменения.
4. Искусственные хромосомы
ДНК упакована в хромосомы, число и форма которых варьируются в зависимости от вида. Сейчас ученые работают над созданием искусственных хромосом. В теории вместо 46 хромосом человек может иметь 47, и эта лишняя хромосома будет содержать в себе гены, введенные учеными. Это может быть абсолютно любой ген — например, защищающий от ВИЧ или другой серьезной болезни. Пока что генетики смогли создать искусственные дрожжевые и бактериальные хромосомы.
четверг, 21 ноября 2019 г.
Визитка команды
Мы команда NanoПрограмма из г.Белово школы №8
Эмблема команды:
Эмблема команды:
Девиз команды:
Мы команда NanoПрограмма,
Трудимся мы каждый день неустанно,
Вместе всех мы победим,
Даже если мы не поедим.
Список команды:
Алексей К.
Михаил Ж.
Кирилл Л.
Данила Ш.
Константин Ш.
Ссылка на блок команды:
http://nanoprogramma.blogspot.com/
Подписаться на:
Сообщения (Atom)